

Diseño de Subestaciones Eléctricas de Distribución - A - A - A-T

TEMA:

RELÉS DE PROTECCIÓN CONTRA SOBRECORRIENTES (50/51)

ALUMNO: Junior Jesús Mendez Aquino

DOCENTE:
Ricardo Zuritas Armas

INDICE:

1.	Introducción	3
2.	Fanox - SIA-B Relé De Protección Autoalimentado	4
2.2.	Características y Beneficios	5
3.	Protecciones: CODIGOS DE FUNCIONES ANSI	6
3.1.	Funciones adicionales	6
4.	Diagrama de conexión	7
4.1.	Diagrama de las protecciones ANSI	7
5.	Protocolo de comunicación	8
6.	Referencias	8

1. INTRODUCCIÓN:

El avance tecnológico y el desarrollo del software asociado han permitido que los relés de protección de los sistemas eléctricos se transformen en un dispositivo inteligente que adquiere señales de campo y realiza varias funciones de control, protección y medida. Así el relé de protección multifuncional adquiere aun mayor relevancia para los sistemas eléctricos de potencia.

Los relés son una forma de protección activa designada a mantener un alto grado de continuidad de servicio y un daño limitado de los equipos , en otras palabras se les consideran los centinelas silenciosos de los sistema de potencia.

Existen diversas formas de clasificar a los relés, entre ellas están:

- * **Por su función:** de protección, de monitoreo, de re cierre, de regulación, auxiliar y sincronización.
- * Por sus entradas: corriente, voltaje, potencia, presión, frecuencia, flujo, temperatura, vibración, etc.
- * Por su principio de operación o estructura: balance de corriente, porcentaje, producto, estado sólido, térmico, electromecánico, etc.
- * Por su característica de actuación: distancia, sobre corriente direccional, tiempo inverso, bajo voltaje, piloto, etc.

Con el pasar del tiempo y el mejoramiento de la tecnología, los relés han experimentado lo que se puede llamar la clasificación según su historia:

- * Relés electromecánicos: atracción e inducción electromagnética.
- * Relés electrónicos de estado sólido.
- * Relés digitales o numéricos (microprocesadores)

2. FANOX es una marca reconocida en la industria eléctrica, vamos a tomar a uno de sus productos como **ejemplo**:

SIA-B RELÉ DE PROTECCIÓN AUTOALIMENTADO (con TCs específicos)

El relé de protección SIA-B protege la instalación contra sobre corrientes y fallas a tierra. Puede ser autoalimentado y a su vez disponer de alimentación auxiliar (alimentación dual). Destinado para distribución secundaria, utiliza la corriente de operación a través de tres transformadores de corriente específicos instalados en las líneas. Transformadores que a su vez también se utilizan para obtener medidas de corriente.

El relé también tiene la opción de alimentarse con una fuente de alimentación auxiliar (24 Vdc, 110 Vac o 230 Vac), puede ser alimentado a través de un cable USB conectado al ordenador, con el adaptador KITCOM USB o con una power bank estándar.

Esta adaptación del SIA-B hace que tenga un tamaño más compacto haciendo más fácil su instalación y su peso ligero repercute en un ahorro de costes de transporte. Está diseñado para adaptarse a RMU's y celdas compactas aisladas con SF6, instalaciones donde el espacio es crítico, gestionándose el mantenimiento de forma eficaz y sencilla.

2.2. CARACTERISTICAS Y BENEFICIOS:

Transformadores específicos. El relé se autoalimenta gracias a la corriente que circula a través de los tres transformadores específicos situados en las líneas. Estos transformadores también son utilizados para obtener medidas de corriente.

Fuente de alimentación auxiliar. Adicionalmente, el SIA-B puede operar con una fuente de alimentación auxiliar (24-230 Vca/Vcc). Puede ser alimentado a través de un cable USB conectado al ordenador, con el adaptador KITCOM USB o con una power bank estándar.

Batería interna de puesta en marcha. Incluye (Batería de Litio: Vida útil de 20 años).

Niveles de arranque realmente bajos. En modo autoalimentado, el SIA-B arranca desde 0,4 veces la corriente primaria mínima del CT (corriente trifásica).

El menú de test. Permite el testeo del circuito de disparo antes de energizar el centro de transformación.

Indicador magnético biestable que señaliza la condición de disparo, manteniendo su posición, aunque el relé pierda la alimentación.

Autodiagnóstico del estado del relé (WATCHDOG) a través de un LED.

Puertos de Comunicación. Para permitir las comunicaciones, los relés están provistos de un puerto frontal micro USB para comunicación local y comunicación remota opcional a través del puerto trasero RS485 (protocolo ModBus RTU).

Salida de disparo para bobina de baja potencia. El SIA-B dispone de salida de disparo para bobina de baja potencia (24 Vdc – 135 mJ) y dependiendo del modelo; 1 entrada de disparo externo y 2 salidas configurables.

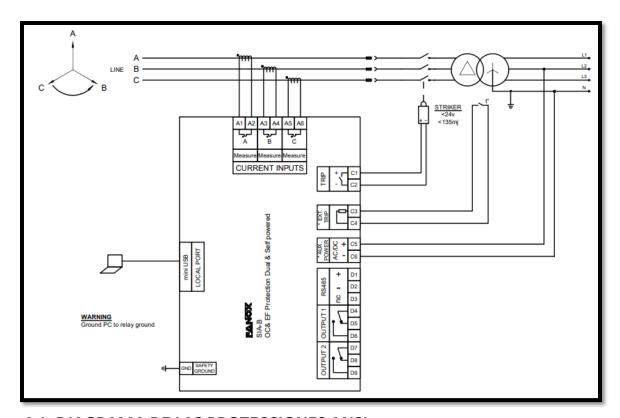
Memoria RAM no volátil. El SIA-B incluye memoria RAM no volátil para almacenar hasta 100 eventos y registro de faltas (DFR – 4 informes de falta en formato de datos), manteniendo fecha y hora gracias a su reloj interno en tiempo real (RTC – Real Time Clock) incluso sin alimentación.

La instalación y mantenimiento de baterías externas se elimina. Reduciendo así los costes de la instalación.

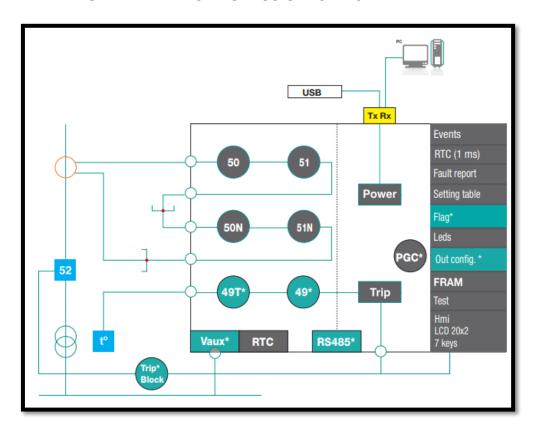
Tamaño compacto. Facilita la instalación del relé y su peso ligero ayuda al cliente a ahorrar costes de transporte.

3. PROTECCIONES: CODIGOS DE FUNCIONES ANSI

- * 50 Sobrecorriente instantánea de fase
- * 51 Sobrecorriente de tiempo inverso de fase
- * **50N** Sobrecorriente instantánea de neutro calculado
- * 51N Sobrecorriente de tiempo inverso de neutro calculado
- * SHB Bloqueo por Segundo Armónico
- * **49T** Disparo externo
- * 49 Sobrecarga por imagen térmica
- * TB Protección de seccionador mediante bloqueo de disparo
- * **PGC** Lógica Programable


3.1. FUNCIONES ADICIONALES

- * RTC Reloj en Tiempo Real
- * **PGC** Control Lógica Programable
- * HMI Interfaz de usuario
- * SER Registro secuencial de eventos
- * **DFR** Registro de faltas
- * **MET** Medida
- * STTG Grupos de ajustes
- * CMMD Comandos


	Permiso de función: Si/No
	Rango de operación: 0,20 a 20 x ls (paso 0,01)
	Tiempo de operación: 0,02 a 300 s (paso 0,01 s)
Función 50	Nivel de activación 100%
	Nivel de reposición 90%
	Reposición instantánea
	Precisión de la temporización: \pm 40 ms o \pm 0.5% (el mayor de ambos)
	Permiso de función: Sí/No
	Rango de operación: 0,20 a 7 x ls (paso 0,01)
	Curvas IEC 60255-151 y ANSI - IEEE
	Tiempo de Operación: IEC Inversa, IEC muy inversa, IEC extremadamente inversa IEC inversa de tiempo largo, ANSI Inversa, ANSI muy inversa, ANSI extremadamente inversa. Tiempo definido: 0,02 a 300 s (paso 0,01 s)
Función 51	Dial: 0,05 a 1,25 (paso 0,01)
	Nivel de activación de la curva 110%
	Nivel de reposición de la curva 100%
	Nivel de activación del tiempo definido 100%
	Nivel de reposición del tiempo definido 90%
	Reposición instantánea
	Precisión de la temporización: ±5% o ±30 ms (el mayor de los dos)

4. DIAGRAMA DE CONEXIÓN:

4.1. DIAGRAMA DE LAS PROTECCIONES ANSI:

5. PROTOCOLO DE COMUNICACIÓN:

En este equipo podemos encontrar el protocolo de comunicación (ModBus RTU).

Los relés están provistos de un puerto frontal micro USB para comunicación local y comunicación remota opcional a través del puerto trasero RS485.

Se utiliza el protocolo ModBus/RTU estándar, por lo que cualquier programa o PC puede comunicarse fácilmente con el equipo.

COMUNICACIONES

USB (Modbus RTU)

USB (Modbus RTU) + RS485 (Modbus RTU)

6. REFERENCIAS:

https://dspace.ups.edu.ec/bitstream/123456789/2093/13/UPS-GT000155.pdf

https://frrq.cvg.utn.edu.ar/pluginfile.php/3415/mod_resource/content/0/PT071-Protecciones en MT.pdf

https://www.fanox.com/es/products/proteccion-de-distribucion-primaria-y-secundaria-power-td/sia-b-autalimentado-rele-proteccion/#1547729016901-f3f3f9df-2687

https://www.fanox.com/wp-

content/uploads/documents/ES FANOXTD FICHA SIA OCEFDistSecundaria SIAB-SPECIFIC-CT Conectores-Desenchufables R11.pdf

https://www.fanox.com/wp-

content/uploads/documents/EN FANOXTD MANU SIA MODBUS SIAB-SPECIFIC-CT R002.pdf